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Stable Adaptive Controller Design

Part II: Proof of Stability

Kuapati S. Narendra, Yuan—Rao Lin and Lena S. Valavani

1. Introduction: In this paper w~~pres~nts~a proof of the stability in the large

of an adaptive system which is a modification of that originally suggested by

Monopoli f~1~~ Ld later refined by Narendra and Valavani E~~~~ The proof of stability

applies to both continuous and discrete systems.

the stability problem was clearly defined and a conjecture was made tha t

the plant together with the controller would be stable if the augmented error is

bounded. Recently, while applying the same approach to discrete ~~~~~~~ Lin and

Narendra [3] suggested~a new error model basedj~~ hejjdrd prototype~discussed in
4 uJ 0 S  ~~~~~~~~~~~~~~~ ~~~~~~~~~~~

(2 1 (Lenmia 1) and on the earlier work of Kudva and Narendra (4]. This model contains

an additional feedback term similar to that found in much of the adaptive observer

literature L5,k~1’~~id is particularly useful in proving the stability in the large

of discrete adaptive systems P1~~ The successful resolution of the latter problem

provides the motivation for using a similar model in the continuous case as well.~~

Ever since the publication of [1] there has been a great deal of interest in

the problem of designing stable adaptive controllers. In (8] Feuer and Morse pre—

sented such a controller but its extreme complexity precludes its use in practical

applications. Since then, several authors [9—13] have also attempted this problem

for both discrete and continuous systems but their results are yet to be verified.

In [9] the stability in the large of a simple discrete adaptive controller is con-

sidered and both discrete and continuous controllers are discussed in [10]. In

[11] and [12] the continuous adaptive problem is treated when the input to the

system is “sufficiently rich”. A proof of stability for the continuous case is

proposed in [13] for the adaptive control problem considered in [1] and [2] and also

involves the additional feedback signal described earlier.

L -

~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



p _
~~ 

_ _ _ ~_ . ., —~--~~;_~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~- -

• —2—

The problem discussed in this paper is essentially the same as that in [2].

The philosophy as well as the specific structure of the controller (except f or

the additional feedback term) and the adaptive laws are the same as in [2J.

Hence, these aspects of the problem are discussed in section 2 only in a con-

densed form and the reader is referred to [2] for all details. The remaining

sections are devoted to the proof of stability with which this paper is primarily

concerned. The simple proof given in section 5 can be used, as mentioned earlier,

for both continuous as well as discrete systems with only minor modifications.

Hence, even though the emphasis is on the continuous case, comments are made in

the paper to indicate how the proof could also be applied to the discrete case.

The augmented input to the reference model was first introduced in (1] in order

to avoid differentiation. The concept of positive realness which is central to the

development of stable adaptive laws led to the introduction of the operator*

PL (e) = L(s)9(t)L
1(s) in [2]. Much of the difficulty encountered in proving the

stability of the adaptive system can be traced to the characteristics of PL (0) and

the related operator 
~~~~~ 

— L 1(s)0(t)L(s) . Since PL (O) = PL (0) = 0, when e is

a constant , it was felt that the adaptive controller would be stable if 0(t)  changes

“slowly” with t ime . This intuitive assumption can now be justified by the stability

analysis presented in this paper .

In section 2 the structure of the adaptive controller is discussed briefly and

the principal stability question is restated in section 3. While state—variable

equations are used wherever appropriate, the emphasis throughout the paper is on

input—output descriptions. Section 4 is essentially self contained and all the

mathematical concepts needed are developed here. Using these results the proof of
1t
~A

the stability of the adaptive system is shown to follow directly in section 5. •~~~~~ ,
‘
~
‘

* Throughout the paper both differential equations and transfer functions c .
used in the arguments and, depending on the context, “s” is used as a -.
differential operator or the Laplace transform variable. .
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2. Design of the Adaptive Controller:

A plant P to be controlled is completely represented by the input—output pair

{u(t)~~~(t)} and can be modeled by a linear time—invariant system

x =Ax(t)+bu(t)p p p  p (1)
y = h x tp p p

where A is an (nxn) matrix and h and b are n—vectors. The transfer function of thep p p

plant is W (s) wherep

T —l ~~K Z ( s )
W (s) = h (sI—A ) b = 

~~~~~~~~~~~~ 

(2)

with w (s) strictly proper, Z (s) a monic Hurwitz polynomial of degree m (~n—l), R~(8)

a monic polynomial of degree n and K a constant gain parameter. We further assume

that only m,n and the sign of K are known for use in the design of an adaptive

controller.n*(=n_m) is referred to as the relative degree of the plant.

A model M represents the behavior desired from the plant when it is augmented

with a suitable controller . The model has a reference input r(t) which is uniformly

bounded and an output yM
(t). The transfer function of the model, denoted by WM(s)

may be represented as

~ Z (s)
WM

(s) KM RN
(s)

where Z.~(s) is a monic Hurwitz polynomial of degree m
1~ m, EM(s) is a monic Hurwitz

polynomial of degree n and KM is a constant . W (s) is completely specified and the

aim of the design is to generate suitable bounded inputs u(t) to the plant so that

the deviation of the plant from the desired behavior as measured by an error signal

where

~ IY~(t) — YM (t)l (4)

t ends to zero as t -‘ ~~.

.1
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*Structure of the Controller (n ~2):

The basic structure of the adaptive controller used in the following sections

is shown in Figure 1. . The controller consists of a gain c0 and two auxiliary

• signal generators F1 and F
2
. F1 contains (n—i) parameters c1 

(1 — l,2,...,n—l)

• and F2 contains n parameters d~ (j — 0,l,2 ,...n—l) . The 2n adjustable parameters

are denoted by the elements of a parameter vector

— [c0(t),O
T(t) ] ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(5)

~
1 and F2 are described by the vector differential equations

= cTvW 
f ) F

1 
(6)

;(2) 
= Av~

2
~ + b y ~f p  

~ F~(2) 
— d0

y + dTV (2) )

where A is an (n—l) x (n—i) stable matrix, cT 
= (c1,c2 ,..., c 1] and dT 

= [d1,d2,. .

Defining the vector of transfer functions V(s) as

A —lV(s) — (sI—A) bf 
(
~
)

V1
(s), the jth component of V(s), denotes the transfer function from u(t) to

or y (t) to v
~~

2
~ (t) . For constant values of the control parameters the transfer

functions of F1 and F2 are W1(s) and W 2 (e) , where

• 
~~t

• 

W1(s) 
- ~

Tv 5  
~ 

; W2 (s) - dTV( s) + d0 ~ 
+ d0 

(8)

• If (A,bf) is in companion form, ci 
and d

1 
(1 — l,2,...,n—l) represent the coefficients

of 5n 1 1  of the numerator polynomials of W1(s) and W 2(s) respectively.

Denoting the principal signals of interest r(t) ,v
(1) (t) , y (t) and v~

2
~ (t) as

the elements of a vector w(t)
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• ;T(~ ) ~ [r( t) , wT( t) ]  ~ [r(t),v
( l )T

(t),y~(t),v
t 2 ) T

(t)l
t (9)

• the input to the plant, as shown in Figure 1 is

• u(t) ~ ~
T(t) ( t) — ac

1
(t)

T(t) F ( t) r = rT 
> 0 (10)

The only difference between the controller structure described in equations (5—10)

and that given in [23 is the existence of the second term in the right hand side

• of equation (10).

- 

. 

Following the results of [2] it can be shown that a constant control parameter

—*
vector 0 exists such that If e (t) 0 the transfer function of the plant together

I with the controller matches that of the model exactly. If c(t) represents the

state error between model and plant, the error differential equations are:

- 

c(t) — A C(t) + b~[,
T(t)w ( t) — ~c1

(t)
T
(t)r (t)]

T 
(11)

• 
c
1
(t) — h E( t )

where We
(S) ~ hc

T(sI_A
c
) 
l
b
c 

= 
j~~ 

W
M
(s) is strictly positive real, and

= 0(t) — 0 is the parameter error vector [Ref. equations (18) and (19) in

• [2] and Figure 2]. The adaptive laws

~(t) — —r c 1(t )w(t ) (12)

assure the boundedness of ~~(t) and c( t) and that ~~1
(t) ÷ 0 as t + = (Ref. section

tt
• 3 for proof). Since the states of the model are bounded, this also assures the

boundedness of the plant states.

t In equations(5)and(9)the 2n dimensional vectors ~~(t) and (t) are defined.
In the main discussions in the paper, as explained later, only the 2n— l dimensional
vectors 9(t) and w(t) are used.

tt c (t) is the error between plant and (unaugmented) model outputs. In section 3

e
1
(t) is the output error when the model output is augmented. The form of the

differential equations (11) and (12), however ,remains the same in the two cases. 

~••~~•-- •~•~ • • 
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*For a relative degree n — 2, the modification suggested in [2] can again be £

used In this case also to develop adaptive control laws of the form (12) [equation

4 1 (22)in [2]]. The principal difficulty,therefore, arises when the relative degree

n is greater than or equal to three. In such a case, an auxiliary signal corres-

ponding to each control parameter has to be used as an input to the model as

described in [2].

£tructure of the Controller (n

*If n ~ 3, with no loss of generality (Ref. [2]), let L(s) represent a Hurwitz

polynomial in ‘s’ such that W
M
(s)L(s) is a strictly positive real transfer function.

If every parameter 01
(t) in the controller in Figure 1 is replaced by an operator

PL(0j
(t)) = L(s)01

(t)L 1(s), the same procedure as that outlined earlier can be used

to derive the adaptive laws. In such a case, 0(t) —rc1(t)C(t), where L 
1
(s)w(t) =

= c(t ) . However, since the controller is to be differentiator free, such a procedure

i.s not possible. Therefore, the following approach described in (2] is used. Corres—

ponding to every feedback signal o (t)w~(t) to the plant, a signal [Oj(t)_PL(0j(t))]wj(t)

is fed back into the model to preserve the form of the error differential equations

(11) and hence the adaptive laws (12). This results in the structure of the adaptive

controller described later in this section.

The complexity of the controller (as given in [2]) is also determined by the

prior knowledge of the gain K of the plant. We therefore deal with the simpler

case first, when K is known , and later consider the case when K is unknown. In
p p

section 5, for clarity of presentation, the proof of stability is also given separately

for the two cases .

• Case (I) (K~ known): With no loss of generality, we can assume here that KM — K = 1.

This implies that c0 
— 1 and hence only 2n—l control parameters (the elements of 8(t))

need to be adjusted.

If the input signal to the plant is

u(t) - OT(t) (t) + r(t) (13)

It ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~



- — 
• • • • • •~~

-

the plant output can be expressed as

y (t) WM
(s)[r(t) + ,T(t) (t)] (14)

The model output is augmented by the additional output Ya(t) where

Ya(t) = W
N
(s)L(s)[{L

~~
(s)0(t)_O(t)L

~~
(s)}

T.)(t) + ae
1
(t)~

T(t)r~(t)] (15)

and L
1(s)w(t) C(t) (Figure 3).

The total output of the model y(t) is the sum of the desired output

yM
(t) — W

M
(s)r( t) and the augmented output yAt ) ; the augmented error e1(t)

e1(t) ~ y~(t) — y(t) = e
1
(t) — y~(t) (16)

is given by

e (t) — W (s)L(s)(,
T(t)c(t) — cte1(t)c

T(t)r~(t)] (17)
1 N

which has the same form as (11) with w(t) and c1(t) replaced by C(t)  and e1
(t)

respectively .

The adaptive law for updating the control parameters is now

~~(t) — —re1(t)c(t) (18)

Case (ii) (K unknown): While the error equations appear to be considerably more

involved when K~ is unknown, they can be readily reduced to the same form as before

by using a change of variables (as shown in [2]). The input to the plant is now

given by

F~ 
u(t) — OT(t)

_
() (19)

The main difficulty here Is that K is different from K and hence an additional

parameter *1
(t) has to be introduc:d in series with the auxiliary input to the

model to obtain the error equations In the form given in (17). For each signal

fed back into the plant a signal L(s)*1
(t)(L

1(s) 0
1

(t) — O
1

(t)L~~ (s) ]w~(t)

has to be fed back into the model (or 4~1
(t) [L 1(s)0

1(t) 
— 01(t)L~~ (s) ]w 1(t) i:o
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• wM
(s)L(s) for practical realization). The 2n+l parameters 0

1
(t) (I l,2,..,2n)

*
and *1

(t)  have to be adap t ively adjusted so tha t iP1
(t) -

~~ 
K / K

M 
and 01(t) 

-s- 0~

ast - ’-~~.

The augmented error e1(t) and the adaptive laws are now given 
by (Ref (2])

K Te (t) = ..2. [W
M
(s)L(s)] {($ (t)C(t) + *(t)~~

(t) ]
KM (20)

—a1
e
1(t)~~(t) r~ (t) }

•(t) = —re1(t)C(t)
— (21)

*(t) —ye1(t)~ (t)

where

• E(t) = L 1
(s)w(t); ~~(t) [L~~(s)~ (t) — ~(t)L

l(s) 1T
w(t) and

K
— 1 — —

~~~
‘ 4’ (t) (22)Kp 1

The stability problem that arises is the same whether K is known or unknown and is

stated in the next section.

3. Statement of the Stability Problem:

As shown in this section, when the adaptive laws (12), (18) or (19) are used

(for the cases n* < 2 , ~ 3(K known) and n~ ~ 3(K unknown) respectively) it is

possible to demonstrate through the existence of a Lyapunov function tha t the state

error vector c(t) or e(t) as well as the parameter error vector +(t) are bounded.

*When n ~ 2 (and no auxiliary input to the model is ~ised) the output of the model

• YM
(t) is bounded and hence the boundedness of the plant output can be concluded.

This, In turn, results in ~1
(t) -~

. 0 as t -- ~~~. However, when ~ 3 we cannot

assume tha t the model output (y(t) — ya(t) + yM
(t)) is bounded and this leads to

the principal stability question of interest in this paper.

If the input to the plant u(t) Is given by (13) (K known) or (19) (K~ unknown) ,

the error model is defined by (17) or (20) and the corresponding adaptive laws

~: ~

— - -
~~

S
~~~~~ -~~_ _ • •.~~~~ J •- •-~~
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are specified by (18) and (21), the problem of stability Is to conclude the bounded—

ness of the plant output y (t) and hence all the relevant signals in the system.

Demonstrating that this is indeed the case is the principal contribution of this

paper. We now proceed to state the stability problem analytically for the case

when K Is known.

The Error Model (K known) :p

The differential equations describing the augmented error e(t) may be expressed

as (Ref. 12])

e = A e(t) + bv(t)

e1
(t) = hTe(t) (23)

• v(t) = ,T(t)c(t) — ct~
T(t)rC(t)e

1
(t) ~ > 0

where

h
T(st_A ~)¼ = W

M
(s)L(s) is SPR (24)

(compare with equation ( 17)) . The corresponding adaptive laws are

~~(t) — —Fe
1(t)C(t). 

(18)

-
• 

*
• For the case n ~ 2, the equations are the same with C(t) rep laced by w(t)  and the

• boundedness of the plant output assures the boundedness of w(t) in the corresponding

error equations. A difficulty arises in this case since y (t) and hence c(t) can—
p

not be assumed to be bounded.

• j By the Kalman—Yacubovich lemma [14] it is known that if condition (24) is

aa~isfied, a real matrix P — ~T 
> 0 a vector q, and an c > 0 exist such that

for any matrix N — NT , 
0

A~P + P A - - q q T - c N
C (25)

Pb - h
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are simultaneously satisfied. Defining a Lyapunov function for the set of

diff erential equations ( 23) , (18) as

• V(e ,+) ~ e
TitPe t) + ,

T
(t)r

_l
+(t)

we obtain using (25)

= _eT(t) Iqq T + cN]e(t) - 2a[e
1(t)C(t)]

Tr[e
1
(t)~ (t)]

f o r a > 0  (26)

It follows that the error model is uniformly stable and e(t) (hence, e1
(t)) and +(t)

are uniformly bounded for any finite initial conditions. Further, since V(t) is a

*
non—increasing function which is bounded below, it converges to some limit V . [For

* 2 these conditions are adequate to assure that e(t) -‘- 0 as t + c]. By (26)

since V(e ,+) is uniformly bounded we have

1 • 

. 
e(t) , e1(t)~~(t) c L2 (27)

Since (t) — —Fe1
(t)~(t), (27) implies that

c (28)

• The importance of the additional feedback term cIe1(t) cT(t ) r C( t )  in the error model

Is now apparent. Since V(e,~) contains the term 
_e

1
2
(t) C

T(t) rr (t) , it is now possible

• to conclude that •(t) c L
2 
which is central to the proof of stability.

The Plant Feedback Loop:

• The plant together with the controller may be described by the differential

• equations

~(t) — A~
x(t) + b [$ T(t) (t) + r(t) ]

m 429)
w(t) — C x(t)

m W ( s)

— 
w

M
(s) V( s)

or equivalently by a vector transfer funct ion W(s) C (sI_An) ¼ — w~( ~m m 

W ( :)V( s)

~~ii•k~ . - • • • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~.— •—— •—•~•
• - ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ —~~~ -— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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• (where V(s) is defined in (7) ) In the forward path and a gain vector +(t) in the

feedback path. Further , r ( t )  — L 
1(8)w(t) and the plant feedback loop together with

the error model may be represented as shown in the F igure 4

The Stability Problem: is then to show that the plant feedback loop with +(t) ad-

justed according to the adaptive law (18) and c is stable in the large.

When K is unknown, the error equations (23) have to be replaced by those

• corresponding to (20) but the plant feedback loop remains essentially the same

(c0
(t) is also adjusted) (Figure 5). Hence, the nature of the stability problem is

the same in both cases.

Stability Problem in the Discrete Case: The form of the difference equations

describing the plant, the reference model and the error model is the same as that

described in this section but the stability problem Is considerably simplified by

• the fact that A4~(k) c and hence A$(k) -‘ 0 as k ÷ ~~~. V(e(k) ,~~(k) ) > 0 and

AV(e(k),4’(k)) ~ 0 also results in e(k),e1(k) , e
1
(k)~ (k) and v(k) -‘ 0 as k ÷ ~~~.

- Hence , all the results described in section (5) carry over directly to the discrete
F-

case as well.

4. Mathematical Preliminaries:

The proof of stability of the adaptive control problem is discussed in section

5 and is based on the five lemmas given in this section. The definitions and related

mathematical concepts needed for the proof of the lemmas are developed in this section.

DefinitIon 1: L denotes the space of functions which are bounded for finite time,

• i.e.
+ +L

e 
= {f: R ÷ R / sup~ f(r)I < 

~ , 
for all t c R }

• t~~t

Remark 1: Since the parameter error vector q~(t) is uniformly bounded all the sig—

nals in this paper can grow at most exponentially and, therefore, belong to this

space .

• Definition 2: Let x( t ) ,y( t )  c L .  Let B(t) be a continuous function such that

~~~(t) ‘ 0 as t -~~ . If y(t) — 8(t)x(t), we denote

________________ _



- •  II

4

I e I I —  ‘tI .___. I I~~~J I
I ,.~ I I r-. ~I �—. I I — ’  I
I 4.1
I •.~~

. I i —  I
L
~ic

71

+

— —
~~~~~~~~~

_1 ! •-~~~~~~~~ H
- - 

•~~~~~
-•

~••“-.. ~~~ 
• • ••__ 4’__4 - ~~~~~~~~~~~



‘~~~~
•-

~~
- ‘~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~

— 
~~~~~~~=;• 

~~~~~~~~~~~~~~~ — -—•:--
~ •_.~-~~ - •~• z

4-’
I

S

I I f 4 J ~~~
I.-. IIJ. 

*S F.. 
-

•
I-..• 

!IL)E:

4-’
- •

+

(Lu’ I
• +

‘-3

H

c

~~~~~~)

~• i

. 

[_ : I r4’~

4-’

‘3

S

I...



rr ~~~~~~ 
- 

— .—-- —• — --.

~

-• - 
- •

—12

y(t) — o[x(t)]

Remark 2: (i) If y(t)~” o[y(t)], then y(t) ÷ 0 as t ÷

• (ii) If ~y(t)~ = o[sup~y(t)I], then y(t) ÷ 0 as t -‘~~~~~~ .

• t~~t• (iii) If Iy(t) I = x(t) + o(sup~y ( r )  I] and x(t) is uniformly bounded
t~t

then

- 
• 

y(t) is also uniformly bounded.

Definition 3: Let x(t),y(t) c L:. If there exists a constant M > 0 such that

• 
~y(t)~ ~

< MIx(t)I, then we denote

y(t) = O[x(t)]

Remark 3: If the input to a linear exponentially stable system is x(t) C and

the corresponding output is y(t), then

Iy(t)I O[sup~x(t)f] (30)
- t~~t

In particular, the input and output of an asymptotically stable linear time—invariant

system satisfy (30).

Definition 4: Let x(t), y(t) € L .  If y(t) = 0[x(t)] and x(t) = 0(y(t)], then we

say that x(t) and y(t) are equivalent and denote this by

x(t) ‘t y(t)

Definition 5: Let x(t),y(t) € L .  If suply(t)I ‘
~~ suplx(t)I, we say that x(t) and

• t~r
y(t) grow at the same rate.

Remark 4: (i) Two signals which are equivalent grow at the same rate but the con—

j verse is not true.

1, (ii) Two signals which are uniformly bounded grow at the same rate. Hence this

4 

definition is of interest mainly for unbounded signals.

(iii) If x(t),y(t) c L , only one of the following three conditions can hold:

• 1 supjx(r)I ‘
~
. suply(r)J, suply(r)I — o[suplx(r)I], or suplx(r)I — o [suply (t)I]

t~r t~~t

- —-- --4
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(iv) {suplx(r)I — o[suply(t)I] or suplx (r)I “~ sup~y(r)I}
t~ t t>T t>t t>t

{sup l x (T) I  = 0[sup~y(t )~~]}.
t~ T t~~t

(v) Let an n—dimensional vector x(t) C L
e 

be unbounded, then there exists at

least a component x1 
(t) such that
0

• suplx1 (t )f  ‘~
‘ sup~Ix(t)II

t~~t 0 t~r

In the following Lemmas 1—3 , x(t),y(t) ~ 
L and H(s) is the rational transfer

function of an asymptotically stable system and is strictly proper. All initial

conditions are assumed to be Identically zero.*

Lemma 1: Let x(t) and y(t) be the input and output respectively of a system with

transfer function H(s). Then

(I) x(t) C Lt’=s y(t), “ ( t )  C L~ 1 ~ p ~

• (ii) x(t) c or L 2 =r.. y(t) ÷ 0 as ~ ÷

(iii) x(t) ÷ 0 as t ÷ ‘~~~~ y(t) ÷ 0 as t ÷

The proof of Lemma 1 can be found in any good text on linear systems (Ref. [15]).

Lemma 2: Let x(t) c L~ (or L1) and p(t) C L . If x(t)p(t) is the input to H(s)

and y(t) the corresponding output, then

y(t) o [suplp (-r)I]
t~~~

-t

Proof: Let h(t) be the impulse response of H(s). h(t) C L1.
r t

y(t) — 
J 

h(t—t)x(t)p(r)dt
0

(t
• Iy(t)I ~ suplp (r) I I Ih(t—t)x(t)Idt
• t~~t tt

Since Lemma 1 is valid for any x(t) c L 2 (or L1
) ,  

J 

(h(t—t)x(t) (cit ÷ 0 as t ÷ ~ or

- 
Iy( t ) I — o[sup (p (t)I] 

0

• t~~t

* If the initial conditions are non—zero, the output In Lemma 2 contains an
additional exponentially decaying term.

II.! 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.~~ ‘.—~_________
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Lemma 3: In the feedback system x(t)~/~~~\ I 1 y(t)
• ‘ N E )  ~ H(s) I-

shown in Figure 6 ~~~~~~ L I
- - -

~ y(t) — H (s) (x(t)+~ (t )y( t ) ]

- If B(t) c L2 or or B(t) ÷ 0 as t ÷ ~, then 0’

(I) y(t) ÷ 0 as t ÷ ~ , if x(t) ÷ 0 as t ÷
• Figure 6

(ii) y(t) is uniformly bounded, if x(t) is uniformly bounded.

Proof: The proof is a direct consequence of Lemma 2, the linearity of H and

Remark 2.

Remark 5: If in Lemma 3 Ix(t) I = o[suply(r)I], the same results hold and
t~~T

x ( t ) , y ( t )  ÷ 0.

Remark 6: In the discrete case x(k) c or ~
2 implies that x(k) ÷ 0 as k ÷ ~~~.

With obvious modifications Lemmas 1—3 hold even if H(z) is a proper (and not

strictly proper) discrete asymptotically stable transfer function.

• While various generalizations of the following lemma can be stated ,Lemrna 4 is

adequate for the proof of stability in section 5.

Leuma 4: In the plant feedback loop (Figure 3) defined by equations (1) and (6),

the input to the plant and the states of F
1 

and F
2 

can not grow faster than the output
of the plant i.e.

u(t) ,v~~~ (t) ,v~
2
~ (t) = 0(sup(y (T)I] i = l,2,...,n l

t~~~
-t ~~

Proof: Since v~~~ (t) and ~~~~~~~~~~~~~ are the states of the asymptotically stable sys—

tems F1 and F2 with Inputs u(t) and y (t) respectively, we have v~
2
~ (t) = O[sup(y (t)f].

H 
p t~~t

Hence it suffices to show that

u(t) — 0[sup(y (t)I]
t~ r ~

We show in what follows that

y (t) — o[suplu(.r)I] (31)
• 

• t~~t

- •- ~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~ ~~ ~~~~~~~~~~~~~~~~~ • • ~ •• • • • • •• ~~•~~—-- ~~- • - •—



-

• 
• leads to a contradiction. By (31) we have

4

I 

• 

v~
2
~(t) — o[suplu(t)I] (32)

t~~t

Consider the feedback 1oop F 1 defined by

• ;(l) = Av W + bfu (6)

and

u( t) = O T(t) (t) + r( t) (13)

Since r(t) is uniformly bounded and y (t) and v~
2
~(t) satisfy (31) and (32), if u(t)

is unbounded , v
(1
~(t) is also unbounded and by Remark 4 there is at least one variable

v~~~(t) , 1 ~ ~ n—l which grows at the same rate as the input u(t) or
“I 0

~ suplu(t)I (33)
t~ r t~~

Since F1is a vector differential equation with bounded coefficients

Iv~~ (t) I = 0[supIv~
1
~(T)I] (34)

0 ~~

Since W (s) is a transfer function with zeros in the open left half plane and

v~
2
~(t) — W (s)v~~~(t) (35)
0 p 0

it follows f rom (34) that

sup I v~’~(t)I - 0 [supIv~
2
~(t)I] (36)

t~~t 0 t~ r

From (33) and (36)
• ( 2)

supl u(t)I — 0[suplv (r)I]
t)t t~ t 0

I I  which is a contradiction to (32). Hence

• u(t) — 0[suply (r)I]
t~~t 

p

which proves the 1s~~ a.
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• Remark 7: Leans 4 is needed since we cannot directly conclude that -
~~~

u( t) — 0[suply ( t ) I ] .  In the error model , though e
1
(t) is uniformly bounded,we

t~•t p

cannot conclude that v (t) is uniformly bounded for the same reason. However, in

discrete systems it follows directly that v(k) ÷ 0 as k ÷ ~~~.

Leimna 5 is central to the proof of stability in section 5 and relates the

opera tor 
~~~~ 

— L
1
(s)*(t)L(s) to the pure gain +(t) [Ref. equation (10) in 12]].

Let L(s) be a Hurwitz polynomial in ‘s’ of degree r. With no loss of general—

ity* assume
H r

L(s) II (s+a~) (37)
H 1=1

where a1 is real. Defining A1
(s) as

I
Ai
(s) = L(s) / E ( s+a1) ,  I = l,2,...r—l; A (s) = L(s)

j=l 0

If ~(t) is a function which is r—times differentiable, then
1 r—I.

(L (s)$(t)L(s)]C(t) — [~~(t) — ~ A
L
(s)+(t)A

i+l
(S)]C(t) + c(t) (38)

1—0
where e(t) is an exponentially decaying term due to the initial conditions. Figure

7 shows the two equivalent forms in (38) and the corresponding signals.

Remark 8: For the discrete case, if L( z) is a polynomial with all its zeros within

the unit circle

r—l
[L~~(z)$(k)L(z) ]~ (k) — ($(k) — E A 1

(z)A4(k)zA ~1
(z)]ç(k) + c(k) (39)i_o i i

where •(k+l) — +(k) — A+(k) and c(k) -‘ 0 geometrically in k.

Lemma 5: If L(s) is defined as in (37) and L(s)~ (t) — w(t) with w(t) C L and

~(t) C L2nL~ then

EL ’(s)
~
(t)L(s)k(t) — $(t)c(t )  + o[suplw (t)(1

* * If L(s) contains complex conjugate zeros, the form of the expansion of the
operator L +L remains the same but the coefficients of the polynomials have to be
modified . A1(s) is, however , stable for all 1. — 0,l,...r—1, e.g., if
L(s) e2+2as + b and has complex zeros L 1$L — 2 — 1

s +2as+b • +2as+b
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Proof: The proof follows directly by using the expansion (38), Lemma 2 and Remark 3

since

A1
(5)~ (t) = A

1
(s)L~~(s)w(t) = 0[suplw (t)(]

t~ r
5. Proof of Stability:

The proof of stability of the plant feedback loop follows directly from Lemmas

4 and 5 in section 4.

The motivation for the proof may be described qualitatively as follows : Assuming

that w(t) and hence ç(t) are unbounded,Lemma 4 assures us that they cannot grow faster

than the plant output y (t) . Using Lemma 5~~~(t) can be shown to be the sum of three

signals, WM(s)r(t),el(t), 
and y (t) where the first two are bounded and the third

term by Lemmas 2,3 and 4 is o[sup(y ( t ) I ] .  Hence , we have a contradiction and y (t)
t~•r p p

is uniformly bounded . This , in turn , implies that w(t) ,r ( t )  and x (t) are uniformly

• bounded .

Proof:

Case (1) n~ ~ 3 and K = KM 
= 1: (Figure 4)

• By Lemma 4, if we can show that y (t) is uniformly bounded, then ali signals in

the system are uniformly bounded. From ( 14)

• y (t) — WM (s) r(t)  + W
M
(s)$

T(t)w(t) (40)

where W
M
(s)r(t) is a uniformly bounded signal.

The second term in the right hand side of (40) can be expressed as

W
M
(s)$ (t)w(t) — [W~ (s)L(s) ] [C1(s) 4~

T( t )L(s)]? ( t )

By Lemma 4 and Lemma 5

WM(s)$ (t )w( t )  — [WM(s) L( s)J {+
T(t ) r ( t )  + o[sup~y (t)~~]}

Further, since by (23)

• 
,T(t)~~(t) — ‘v(t) — ~

T(t)~(t)

• • —— -
~~~~~: 

- -- - --;1~ç• • • _•• ‘.I~~~1ii~~~k • 4~~~~~~~~~i • ~~~~~~~ ——~—
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where [W
M(s)L(s)]v(t) — e1(t)

and [WM(s)L(s)](a$
T(t)C(t)) — o [suply ~t)(] by Lemma 3,4 and +(t)  c L 2

t~~t

Hence, we have

y (t) — WM(s)r(t) + e1(t) + o[sup~y 
(t )~~~]p t>t p

It follows that y (t) is uniformly bounded and the plant feedback 1oop is stable in

the large.

*Case (ii) n ~ 3 and K is unknown: (Figure 5)

• In this case ,

y (t) = [ 
~~~

wM(s)][ j
!~1 r(t) +

= WM(s) r (t )  + [~~~~WM (s)L(s) ] [L ’(s)~
T (t )L ( s) ]c( t )

By the same arguments as case (1)

-• 

jZ~
wM(s)s (t)w(t) — [ ~~~ W

M
(s)L(s)] {+ T(t)~~(t) + o[suP I~~( T ) I ] }

From Figure 5

= (t) — ~T(t)~~(t) —

But ~~(t) = [L
l
(s)~

T
(t) — ~

T(t) L
_l

(s) ]~ (t)

= L l(s),T(t)L(s)c(t) —

— o[sup~y (t )~~~]
t~ r

Since 4i(t) is uniformly bounded, again we conclude that y (t) is uniformly bounded.p
Case (iii) discrete system:

For the discrete system, with v(t) replaced by v(k) ÷ 0 and ~~(k) ÷ 0, by eq. (39)

stability follows trivially.

___________  —• —-~ • •~~~ .-~~~—- • •- —-- •~~- —~~-~ --—• —• - • • ~• -• --
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We have established that w(t ) Is uniformly bounded , hence the input to the
I

error model r(t) is also uniformly bounded. It follows by (26) that e(t) is

uniformly bounded , hence the second derivative of the Lyapunov function V(t) is

also uniformly bounded , which assures that V(t) is uniformly continuous. Hence

llm ‘1(t) = u r n  e(t) = u r n  4’(t) = 0
• 

t4C0 t -~~

We also notice that the augmented input signal to the model [L l(s) ,T(t) ,T (t) L
_l

(s) lw(t)

and ae1(t) r T ( t )r r ( t )  also tend to zero as t ÷ =. Hence, the error

y (t) — y
M
(t) ÷ 0 as t ÷ ~

5. Conclusion: The paper presents a complete and unified proof of the stability in

the large of both continuous and discrete adaptive control systems. Except for an

additional term, the controller structure is identical to that given in [2]. When

the specified model transfer function WM
(s) is not positive real, an operator

• ~~~~ 
= L(s)0(t)L

1(s) was used in [2] to generate a stable adaptive law for a

• parameter 0(t). Almost all the stability questions that arise in the adaptive control

problem can be traced to this operator as well as a related operator 
~~~~ 

—

= L 1(s)0(t)L(s) and the extent to which these approximate a pure gain 0(t). In—

tuition suggests that when 6(t) is constrained to vary “slowly” in some sense

(e.g. 0(t) ÷ 0 or 0( t )  C L 2) the operator 
~~~~ 

would approximate 0(t). The proof

given in section 5 may be considered to be a mathematical justification of this

statement. In this sense, it is based on our intuition regarding the behavior of

the adaptive loop and the augmented inputs which originally led to the schemes

suggested in [1] and [2] .  • 

- •
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